Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Physiol ; 13: 1000194, 2022.
Article in English | MEDLINE | ID: covidwho-2236047

ABSTRACT

Introduction: SARS-CoV-2 is a highly contagious virus that was identified as the cause of COVID-19 disease in early 2020. The infection is clinically similar to interstitial pneumonia and acute respiratory distress syndrome (ARDS) and often shows cardiovascular damage. Patients with cardiovascular risk factors are more prone to COVID-19 disease and their sequelae. Due to the anti-inflammatory effect and the improvement in pulmonary function, auricular vagus nerve stimulation (aVNS) therapy might alleviate a COVID-19 infection. Patient and Methods: A high-risk patient with cardiovascular diseases and Implantable Cardioverter Defibrillator (ICD), type 2 diabetes and peripheral arterial disease IV, according to Rutherford`s classification, became infected with COVID-19. The patient underwent wound surgery because of an infected necrosis with a methicillin-resistant Staphylococcus aureus (MRSA) of his small toe and was already on aVNS therapy to relieve his leg pain and improve microcirculation. AVNS was performed with the AuriStim device (Multisana GmbH, Austria), which stimulates vagally innervated regions of the auricle by administering electrical stimulation via percutaneous electrodes for 6 weeks. Results: The multimorbid high-risk patient, who was expected to go through a severe course of the COVID-19 disease, showed hardly any symptoms during ongoing aVNS therapy, while other family members, being much younger and healthy suffered from a more serious course with headache, pneumonia and general weakness. Conclusion: The auricular vagus nerve stimulation is a clinically tested and safe procedure and might represent an alternative and effective way of treating COVID-19 disease. Nevertheless, due to several limitations of this case report, randomized controlled studies are needed to evaluate the efficacy of aVNS therapy on COVID-19 disease.

2.
Frontiers in physiology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2219028

ABSTRACT

Introduction: SARS-CoV-2 is a highly contagious virus that was identified as the cause of COVID-19 disease in early 2020. The infection is clinically similar to interstitial pneumonia and acute respiratory distress syndrome (ARDS) and often shows cardiovascular damage. Patients with cardiovascular risk factors are more prone to COVID-19 disease and their sequelae. Due to the anti-inflammatory effect and the improvement in pulmonary function, auricular vagus nerve stimulation (aVNS) therapy might alleviate a COVID-19 infection. Patient and Methods: A high-risk patient with cardiovascular diseases and Implantable Cardioverter Defibrillator (ICD), type 2 diabetes and peripheral arterial disease IV, according to Rutherford`s classification, became infected with COVID-19. The patient underwent wound surgery because of an infected necrosis with a methicillin-resistant Staphylococcus aureus (MRSA) of his small toe and was already on aVNS therapy to relieve his leg pain and improve microcirculation. AVNS was performed with the AuriStim device (Multisana GmbH, Austria), which stimulates vagally innervated regions of the auricle by administering electrical stimulation via percutaneous electrodes for 6 weeks. Results: The multimorbid high-risk patient, who was expected to go through a severe course of the COVID-19 disease, showed hardly any symptoms during ongoing aVNS therapy, while other family members, being much younger and healthy suffered from a more serious course with headache, pneumonia and general weakness. Conclusion: The auricular vagus nerve stimulation is a clinically tested and safe procedure and might represent an alternative and effective way of treating COVID-19 disease. Nevertheless, due to several limitations of this case report, randomized controlled studies are needed to evaluate the efficacy of aVNS therapy on COVID-19 disease.

3.
Healthcare (Basel) ; 10(10)2022 Sep 20.
Article in English | MEDLINE | ID: covidwho-2043659

ABSTRACT

BACKGROUND: To optimize our strategic planning, we aimed to investigate the impact of the COVID-19 pandemic on the treatment of patients with peripheral artery disease (PAD) at our tertiary care hospital. METHODS: We performed a retrospective single-center cohort study. In total, 1210 patients were included: 611 patients admitted between March and December 2020, compared to retrospective data from 599 patients from the same period in 2019. RESULTS: Emergency admissions involving patients with advanced stage PAD increased significantly during the pandemic period of 2020, compared to the same period in 2019 (p < 0.0098). This increase was accompanied by increased limb amputations performed during the first lockdown, post-lockdown and the second lockdown in 2020, compared to respective time periods in 2019 (p < 0.0003, p < 0.0004, p = 1). No SARS-CoV-2 infection was observed among patients with PAD during the observation period. CONCLUSIONS: Strict lockdown protocols adversely affected the care of PAD patients, with persisting aftereffects, including increased emergency admission with unsuccessful revascularization attempts leading to limb amputation, even after the peak of the pandemic had passed. We believe that providing continuous care to PAD patients, even in times of global pandemics, will prevent the unfavorable outcomes observed during the COVID-19 pandemic in 2020.

4.
Int J Mol Sci ; 22(2)2021 Jan 08.
Article in English | MEDLINE | ID: covidwho-1389386

ABSTRACT

Neutrophils are primary effector cells of innate immunity and fight infection by phagocytosis and degranulation. Activated neutrophils also release neutrophil extracellular traps (NETs) in response to a variety of stimuli. These NETs are net-like complexes composed of cell-free DNA, histones and neutrophil granule proteins. Besides the evolutionarily conserved mechanism to capture and eliminate pathogens, NETs are also associated with pathophysiological processes of various diseases. Here, we elucidate the mechanisms of NET formation and their different implications in disease. We focused on autoinflammatory and cardiovascular disorders as the leading cause of death. Neutrophil extracellular traps are not only present in various cardiovascular diseases but play an essential role in atherosclerotic plaque formation, arterial and venous thrombosis, as well as in the development and progression of abdominal aortic aneurysms. Furthermore, NETosis can be considered as a source of autoantigens and maintains an inflammatory milieu promoting autoimmune diseases. Indeed, there is further need for research into the balance between NET induction, inhibition, and degradation in order to pharmacologically target NETs and their compounds without impairing the patient's immune defense. This review may be of interest to both basic scientists and clinicians to stimulate translational research and innovative clinical approaches.


Subject(s)
Autoimmune Diseases/immunology , Extracellular Traps/immunology , Neutrophils/immunology , Aortic Aneurysm, Abdominal/pathology , Autoimmune Diseases/pathology , Autoimmunity/immunology , COVID-19/immunology , COVID-19/pathology , Humans , Neutrophil Activation/immunology , Plaque, Atherosclerotic/pathology , Thrombosis/pathology
5.
Front Physiol ; 11: 890, 2020.
Article in English | MEDLINE | ID: covidwho-719750

ABSTRACT

Background: Covid-19 is an infectious disease caused by an invasion of the alveolar epithelial cells by coronavirus 19. The most severe outcome of the disease is the Acute Respiratory Distress Syndrome (ARDS) combined with hypoxemia and cardiovascular damage. ARDS and co-morbidities are associated with inflammatory cytokine storms, sympathetic hyperactivity, and respiratory dysfunction. Hypothesis: In the present paper, we present and justify a novel potential treatment for Covid19-originated ARDS and associated co-morbidities, based on the non-invasive stimulation of the auricular branch of the vagus nerve. Methods: Auricular vagus nerve stimulation activates the parasympathetic system including anti-inflammatory pathways (the cholinergic anti-inflammatory pathway and the hypothalamic pituitary adrenal axis) while regulating the abnormal sympatho-vagal balance and improving respiratory control. Results: Along the paper (1) we expose the role of the parasympathetic system and the vagus nerve in the control of inflammatory processes (2) we formulate our physiological and methodological hypotheses (3) we provide a large body of clinical and preclinical data that support the favorable effects of auricular vagus nerve stimulation in inflammation, sympatho-vagal balance as well as in respiratory and cardiac ailments, and (4) we list the (few) possible collateral effects of the treatment. Finally, we discuss auricular vagus nerve stimulation protective potential, especially in the elderly and co-morbid population with already reduced parasympathetic response. Conclusions: Auricular vagus nerve stimulation is a safe clinical procedure and it could be either an effective treatment for ARDS originated by Covid-19 and similar viruses or a supplementary treatment to actual ARDS therapeutic approaches.

SELECTION OF CITATIONS
SEARCH DETAIL